This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary.

ôo
 SS Peter \& Paul Catholic School

Objective \& Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.		$10=6+4=7 \begin{aligned} & \text { Use the part-part } \\ & \text { whole diagram as } \\ & \text { shown above to move } \\ & \text { into the abstract. } \end{aligned}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later.	$6+5=11$$\theta$ 0 0 0 0 6 0 0 0 0 Start with the bigger number and use the smaller number to make 10. Use ten frames.	$3+9=$ Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9+5=14$ 14	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20	2 more than 5.		Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7.' ' 8 is 3 more than 5.'

 Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten	Model using dienes and bead strings	Use representations for base ten.	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$
Use known number facts Part part whole	Children explore ways of making numbers within 20	$\begin{gathered} 20 \\ \square+\square \\ \square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	\square $+1=16$ $16-1=$ \square $1+$ \square $=16$ 16 \square $\square=1$
Using known facts		Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$

 Strategy	Concrete	Pictorial	Abstract
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$
Add a 2 digit number and tens	Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add two 2-digit numbers	Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} \frac{25+47}{20+5} \begin{array}{c} 20+40=60 \\ 20+7=12 \\ 60+12=72 \end{array} \end{gathered}$
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	$\begin{aligned} \frac{4+7}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.

Objective \& Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away.	$7-4=3$ $16-9=7$
Counting back	 Move objects away from the group, counting backwards. Move the beads \square along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?
Find the Difference	Compare objects and amounts \square 7 'Seven is 3 more than four' 4 'I am 2 years older than my sister' Lay objects to represent bar model.	Count on using a number line to find the difference.	Hannah has12 sweets and her sister has 5 . How many more does Hannah have than her sister.?

Objective \& Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$\begin{aligned} & \text { 氚运 } \\ & 20-4= \end{aligned}$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	$34-28$ Use a bead bar or bead strings to model counting to next ten and the rest.	 Use a number line to count on to next ten and then the rest.	$93-76=17$

 Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	 Use base 10 or Numicon to model		$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ 20+3 \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	$\begin{aligned} & \text { 品 }=16 \\ & y_{0}=16 \\ & 10+6=16 \end{aligned}$ Children may draw base ten or PV counters and cross off.	 Begin by partitioning into pv columns Then move to formal method.

 Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	234-179 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	Use the phrase 'take and make' for exchange
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange-see Y3	$\begin{aligned} & { }^{2} 8^{10} X^{1} 0{ }^{4} 8^{1} 6 \\ & -2128 \\ & \hline 28,928 \end{aligned}$
Year 6-Subtract with increasingly large and more complex numbers and decimal values.			

 Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$

 Strategy	Concrete	Pictorial	Abstract
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve prob There are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures.
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5,3 lots of 2 etc.	Draw representations of arrays to show understandino	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$

 Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together.
Counting in multiples of 2, 3, 4, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples. 3 3 3 3 ?	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \\ & \left\lvert\, \begin{array}{l} \begin{array}{l} \text { Use an array to write } \\ \text { multiplication sentences and } \\ \text { reinforce repeated addition. } \end{array} \\ \\ \\ \\ \\ 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{array}\right. \end{aligned}$
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

Objective \& Strategy	Concrete	Pictorial	Abstract
Column Multiplication for 3 and 4 digits $\times 1$ digit.	HundredsTens It is important at this stage that they always multiply the ones first. Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$	x 300 20 7 4 1200 80 28	
Column multiplication	Manipulatives may still be used with the corresponding long multiplication modelled alongside.	Continue to use bar modelling to support problem solving	

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in $\begin{gathered} 24 ? \\ 24 \div 6=4 \end{gathered}$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

Long Division

Step 1-a remainder in the ones

h t o
 041 R1
 $4 \longdiv { 1 6 5 }$

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .
th ht o
$8 \longdiv { 0 4 0 0 R 7 }$
8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7 .

Long Division

Step 1 continued...

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check: $4 \times 61+3=247$

$$
\begin{array}{r}
\text { th h to } \\
0402 \\
\hline \begin{array}{r}
1609 \\
\frac{-8}{1}
\end{array}
\end{array}
$$

When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

Long Division

Step 2-a remainder in the tens

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} t 0 \\ 2 \longdiv { 2 8 } \end{array}$ Two goes into 5 two times, or 5 tens $\div 2=2$ whole tens - - but there is a remainder!	$\begin{gathered} t 0 \\ 2 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$ To find it, multiply $2 \times 2=4$, write that 4 under the five, and subtract to find the remainder of 1 ten.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -4 \downarrow \\ \hline 18 \end{array}$ Next, drop down the 8 of the ones next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18.

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} t o \\ 29 \\ 2 \longdiv { 5 8 } \\ -\frac{4}{18} \end{array}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	$\begin{array}{r} t \circ \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \\ \hline \end{array}$ The division is over since there are no more digits in the dividend. The quotient is 29 .

Long Division

Step 2-a remainder in any of the place values	1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
	$\begin{aligned} & { }^{n+0} \\ & 2 \longdiv { 1 } \\ & 278 \end{aligned}$	$\begin{gathered} \quad h t o \\ 1 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{gathered}$	$\begin{gathered} h t o \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} \frac{1}{7} \end{gathered}$
	Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	Next, drop down the 7 of the tens next to the zero.
	Divide.	Multiply \& subtract.	Drop down the next digit.
	hto	hto	hto
	13	13	13
	$2 \longdiv { 2 7 8 }$	$2 \longdiv { 2 7 8 }$	$2 \longdiv { 2 7 8 }$
	-2	-2	
		- 6	$\begin{array}{r}1 \\ -6 \\ \hline\end{array}$
	Divide 2 into 7 . Place 3 into the quotient.	Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	Next, drop down the 8 of the ones next to the 1 leftover ten.
	1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
	hto	hto	$h t$ o
	139	139	139
	$2 \longdiv { 2 7 8 }$	$2 \longdiv { 2 7 8 }$	$2 \longdiv { 2 7 8 }$
	-2	-2	-2
	07	07	07
	- 6	- 6	- 6
	18	18	18
		$\frac{-18}{0}$	$\frac{-18}{0}$
	Divide 2 into 18. Place 9 into the quotient.	Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	There are no more digits to drop down. The quotient is 139 .

